Hair growth cycle is arrested in SCD1-deficiency by impaired Wnt3a-palmitoleoylation and retrieved by artificial lipid barrier

Wilhelm Stoffel ${ }^{1,2,3^{*}}$, Inga Schmidt-Soltau ${ }^{1}$, Britta Jenke ${ }^{1}$, Erika Binczek ${ }^{1}$, Ina Hammels ${ }^{1,2}$
${ }^{1}$ Laboratory of Molecular Neurosciences, Institute of Biochemistry, University of Cologne, 50931 Cologne, Germany
${ }^{2}$ CMMC (Center of Molecular Medicine), University of Cologne, 50931 Cologne, Germany ${ }^{3}$ CECAD (Cluster of Excellence: Cellular Stress Responses in Aging-Associated Diseases), University of Cologne, 50931 Cologne, Germany

* Corresponding author
e-mail: wilhelm.stoffel@uni-koeln.de

Supplementary Material

Figure S1

Systemic absence of 16:1 in scd1-/- mice. Fatty acid profiles of (a) skin, (b) liver and (c) brain at $\mathrm{p} 1, \mathrm{p} 12, \mathrm{p} 21$ and p 35 of control (black bars) and $s c d 1-/-$ mice (grey bars) are presented paradigmatically. 16:1 encased in red. (d) Autoradiography of argentation thinlayer chromatography (Ag-TLC) of fatty acid methylesters from the 49 -desaturase assay using $\left[1-{ }_{-}^{14} \mathrm{C}\right] 16: 0-\mathrm{CoA}$ as substrate and liver microsomal fraction of control and scdl-/-mice. Solvent system: $\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH} 99 / 1(\mathrm{v} / \mathrm{v})$.

Figure $\mathbf{S} 2$
Absence of liver-steatosis and insulin resistance in adult scd1-/- mice. (a,b) Oil-red staining of liver sections $(5 \mu \mathrm{~m})$ of control and $s c d l-/$ mice. (c) HPTLC separation of neutral lipids in total lipid extracts of control and scdl-/- liver, BAT, mWAT and sWAT. Solvent system: hexane/diethylether/AcOH 90/25/1. (d) GTT and (e) ITT of control and scd1-/- mice. Mean \pm SD. P-values are given in the figures.

Figure S3
Fluorescent images of skin sections of $\mathrm{wt}, \mathrm{scd1-/-}$ and $s c d 1-/-c$ mice using anti-Involucrin, $-\alpha 6$-Integrin and -Loricrin antibodies. (a) control, $s c d 1-/-$ and $s c d 1-/-c$ Involucrin (cy3) and $\alpha-6-$ Integrin (FITC), (b) control, scdl-/- and $s c d 1-/-c$ Loricrin (cy3) and $\alpha-6-$ Integrin (FITC).

Enzyme assay

Palmitoyl-CoA desaturase activity in the microsomal fraction of control and $s c d 1-/$ - liver was measured by the enzymatic assay using $\left[1-{ }^{14} \mathrm{C}\right]$ palmitoyl-CoA. Reaction products were separated on 10% silver nitrate impregnated $\mathrm{SiO}_{2} \mathrm{G} 60-$ HPTLC-plates. The $100 \mu 1$ reaction mixture contained: $60 \mu \mathrm{M}\left[1-{ }^{14} \mathrm{C}\right]$ palmitoyl-CoA $(0.1 \mu \mathrm{Ci}), 2 \mathrm{mM}$ NADH, 1 mM ATP, 0.1 M Tris, pH7.4
$100 \mu \mathrm{~g}$ microsomal protein was incubated at $37^{\circ} \mathrm{C}$ for 1 h . Aliquots of $0.5 \mu \mathrm{Mol}$ radioinactive $16: 0$ and 16:1 were added, the mixture was saponified with 0.5 M methanolic KOH , acidified with 2 N HCL and fatty acids extracted with hexane /ether (1/1) twice, concentrated and applied to a $10 \% \mathrm{AgNO}_{3}$ impregnated HPTLC plate activated at $110^{\circ} \mathrm{C}$ for 30 min . The plate was developed in hexane /ether $9 / 1(\mathrm{v} / \mathrm{v})$ and exposed to a Fuji-film for 16 h .

Table S1

scd1 s	5'-tgcacctccetccggaaatgaacgagagaa-3'	k14 s	5'-ctggctcagctgcgctgcgagatggagcag-3'
scd2 s	5'-ttgaaaagagttctcaccactggggagcag-3'	k14 as	5'-tagttcttggtgcgcaggacctgctcgtgg-3'
scd 3 s	5'-tattgagggeattggagccggagtccatcg-3'	lor5 s	5'-tcaccagaaaaagcagcccactccetgccc-3'
scdx as	5'-cttgtagtacctcctctggaacatcaccag-3'	lor5 as	5'-cagagtagccaccgecgcagctagagccac-3'
cers1 s	5'-agtgggcacttgtcgtaccegacggttgca-3'	tra	5'-cagcctggaccatcgtctacaatggtacce-3'
cers1 as	5'-caacggcagccacactcatccaccaccatg-3'	traglu as	5'-cagcacgcagttattcaccggctggtccag-3'
cers2 s	5'-acgcgggatggaagaacacctgcaacaacc-3'	trpv4 s	5'-caggtggtgcttcagggtggacgaggtgaa-3'
cers2 as	5'-ttagctaggagccggctetttgctcetgcc-3'	trpv4 as	5'-ctacagtggggcatcgtcegtcctccactt-3'
cers3 s	5'-ccetgttcttcatcttcaccgtcgtcttct-3'	mboat s	5'-gctgtccetggcattcatcacttatgtgga-3'
cers 3 as	5'-ctaacggccatgetgaccattggcaatgag -	mboat as	5'-cagcctatgagacggtagaagatccagcat-3'
cers5 s	5'-ttggcgcagctttatagtttcgtctagc-3'	wnt3a s	5'-atggtggtagagaaacaccgagagtctcgt-3'
cers 5 as	5'-gcagttggcaccattgctagagctgctgcc-3'	wnt3a	5'-cttgcaggtgtgcacgtcatagacacgtgt-3'
cers6 s	5'-tttaacctgctgctcttgttactacaaggg-3'	wnt4 s	5'-gccacggaggtggagccacgacgegtagge-3'
cers6 as	5^{\prime}-taatcatccacggaacaaggaccagtgagg-3'	wnt4	5'-ggcacgtgtgcatctccaacgagccgctggc-3'
k1 s	5'-gccacaccagcatgagcggaagcagtagcc-3'	wnt10 s	5'-ggaagggtagtggtgagcaa-3'
k1 as	5'-ttaacgccaccgccacctgagctggatcet-3'	wnt10	5'-cacttccgcttcaggtttc-3'
k5 s	5'-tacggaggaggcagcagcattggtgttggc-3'	ßcatenin s	5'-ccttgccetttgcceagcaaatcatgcgcc-3'
k 5 as	5'-ggaggaggaggtggtggagacaaatttgac-3'	Bcatenin as	5'-gcetcettgtcetgagcaagttcacagagg-3'
k10 s	5'-ctcccagattcaaagccagatctecgccet-3'	lef s	5'-ctggcctgtctagaatggagcgtgcgtgca-3'
k10 as	5'-tagcttccgecaccggagettccgecgtag-3'	lef as	5'-tcagatgtaggcagctgtcattctgggacc-3'

