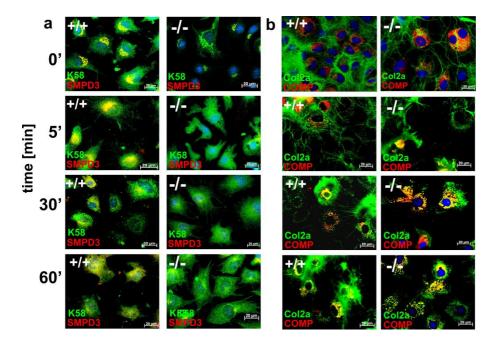
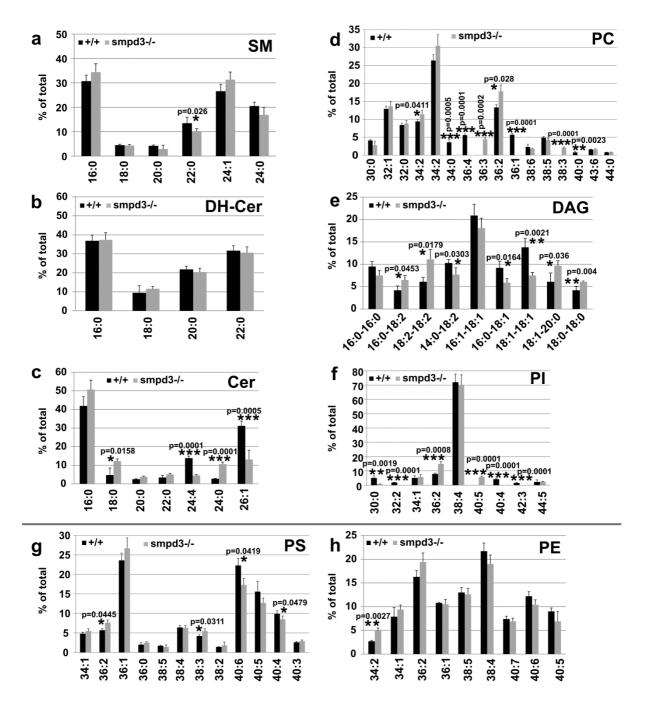

## Neutral sphingomyelinase (SMPD3) deficiency disrupts the Golgi secretory pathway and causes growth inhibition


Wilhelm Stoffel<sup>\*,1,2</sup>, Ina Hammels<sup>1,2</sup>, Britta Jenke<sup>1</sup>, Erika Binczek<sup>2</sup>, Inga Schmidt-Soltau<sup>1</sup>, Susanne Brodesser<sup>2</sup>, Astrid Schauss<sup>2</sup>, Julia Etich<sup>3</sup>, Juliane Heilig<sup>3</sup>, Frank Zaucke<sup>3,4</sup>

- Center of Molecular Medicine (CMMC), Laboratory of Molecular Neurosciences, Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
- Cluster of Excellence, Cellular Stress Response in Aging-Related Diseases (CECAD), University of Cologne, Cologne, Germany
- 3. Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
- 4. Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital, Friedrichsheim gGmbh, D-60528 Frankfurt/Main, Germany
  \*Corresponding author. Tel. +49 221 478 6881; Fax: +49 221 478 6882: E-mail: wilhelm.stoffel@uni-koeln.de


SMPD2, SMPD3 and SMPD5 are members of a superfamily of  $Mg^{2+}$  dependent phosphohydrolases, clustered in the neighbor-joining dendrogram <sup>1</sup>. The DNA sequence of SMPD4 <sup>2</sup>, however, shared neither sequence homology nor active site motifs of the catalytic domain matched by the superfamily profile. We studied the role of SMPD4 in HEK293 cells, stably transfected with a *smpd4-egfp* fusion construct and confirmed the subcellular topography of SMPD4-EGFP predominantly in the GC <sup>2</sup>. However, sensitive nSMase assays <sup>3</sup> in cell lysates of these cell lines revealed no increase of nSMase activity beyond that of *wt* HEK-cells, **Supplementary Figure S1b**. Our experiments preclude the bona fide SMPD4 as an nSMase and pointed to SMPD3 as the dominant mammalian nSMase.



**Supplementary Figure 1.** Enzymatic activity and immunohistochemistry of stably expressing *smpd4-egfp* HEK cells preclude SMPD4 as a neutral sphingomyelinase. (a) qRT-PCR of cRNA of wt and *smpd4-egfp* transfected HEK293 cells, (b) neutral sphingomyelinase activity was not increased in overexpressing *smpd4-egfp* transfected HEK cells, clones HEK 3 and 4. (c) Fluorescence images of *smpd4-egfp* overexpressing HEK cells indicated SMPD4-EGFP localization in the Golgi complex (green). Merged images indicated colocalization with Golgi marker K58 (red) in the Golgi complex.



**Supplementary Figure 2.** Time resolved disintegration of Golgi complex in wt and *smpd3-/-* chondrocytes on exposure to brefeldin. (a) Fluorescence images of p10 wt and *smpd3-/-* primary chondrocytes, grown in culture for six days on cover slips treated with 5µg BFA/ml for 5, 30 and 60 minutes and double stained with: SMPD3- (red) and K58-antibodies (green), (b) Col2a- (green) and COMP-antibodies (red).



**Supplementary Figure 3.** Phospholipidome of wt and *smpd3-/-* chondrocytes. (a-h) HPTLCseparation of SPM, Cer and PL classes of total lipid extract of wt and *smpd3-/-* chondrocytes. Quantitative MS/MS-analysis of sphingomyelin (SM) (a), dihydroceramide (DHCer) (b), ceramide (Cer) (c), phosphatidylcholine (PC) (d), diacylglycerol (DAG) (e), phosphatidylserine (PS) (f), phosphatidylinositol (PI) (g) and phosphatidylethanolamine (PE) (h). N=3

## Supplementary table1.

## Primers for real time-PCR

| smpd1 s   | 5'-cctttatcaaccttaaccctggctaccgag-3' | elov4 as | 5'-ctgatggcgtaggcga-3'                |
|-----------|--------------------------------------|----------|---------------------------------------|
| smpd1 as  | 5'-cgaagcttttgcctcaggtagataagcagc-3  | elov5 s  | 5'-gtatggctgggaccaa-3'                |
| smpd2 s   | 5'-ctctgaaaaccactacaggctgtgaccctc-3  | elov5 as | 5'-catatcggattctcccgc-3'              |
| smpd2 as  | 5'-ctgggtctccgtttcccttgtcagaacgtg-3' | elov6 s  | 5'-acccgaactaggtgac-3'                |
| smpd3 s   | 5'-ctggctgatttccgaaaatctacctcctcg-3' | elov6 as | 5'-cgggagactcggaaac-3'                |
| smpd3 as  | 5'-gtcaggccggacagctgggtgataaaactg-3' | elov7 s  | 5'-gggaacattccatgcc-3'                |
| sms1 s    | 5'-atgctaacgctcacctacctatttatcaa-3'  | elov7 as | 5'-gcaacctctgaccctt-3'                |
| sms1 as   | 5'-tagtcggcagagctgttatgtgtcgtttac-3' | bmp1 s   | 5'-gtgtggggggccaagtgcgggcagatgtgaa-3' |
| sms2 s    | 5'-acttctggtggtatcacttggtctgctggc-3' | bmp1 as  | 5'-tcacttcctgctgtggagtgtgtcctggaa-3'  |
| sms2 as   | 5'-gctcaggtagacttctcattatcctccccg-3' | bmp2 s   | 5'-caagccaaacacaaacagcggaagcgcctc-3'  |
| degs s    | 5'-gcttttagacccctgttc-3'             | bmp2 as  | 5'-tgctaacgacacccgcagccctccacaacc-3'  |
| degs as   | 5'-gtagtgcgggaggtca-3'               | bmp4 s   | 5'-cacctcatcacacgactactggacaccaga-3'  |
| kinase s  | 5'-tcatgtccggtgatgg-3'               | bmp4 as  | 5'-tttaccgtgagtcaagtcacccctgtgttg-3'  |
| kinase as | 5'-ggcttgctaggcgaaa-3'               | comp s   | 5'-gagcagacgtactggc-3'                |
| lyase s   | 5'-atgtctgctaaggggt-3'               | comp as  | 5'-gggagaagcagaagaca-3'               |
| lyase as  | 5'-cggggtccgtagtataa-3'              | Col2a s  | 5'-ccacttcagctatggc-3'                |
| spt s     | 5'-tatgccacgtcgatgt-3'               | Col2a as | 5'-cggtactcgatgacgg-3'                |
| spt as    | 5'-actcaatgatcggggt-3'               | sox9 s   | 5'-ctacccgcccatcacccgctcgcaatacga-3'  |
| kdsr s    | 5'-gacaagctactgcaggcgaagaaagacatt-3' | sox9 as  | 5'-ctgtgtgtagactggttgttcccagtgctg-3'  |
| kdsr as   | 5'-cacagtgacgtacacattgtacggcttcac-3' | cerS1 s  | 5'-agtgggcacttgtcgtacccgacggttgca-3'  |
| a cer s   | 5'-gcatgaattattggctcaaaaggcaccagc-3' | cerS1 as | 5'-caacggcagccacactcatccaccaccatg-3'  |
| a cer as  | 5'-gaatcctgtcaacatgcccacatatccaac-3' | cerS2 s  | 5'-acgcgggatggaagaacacctgcaacaacc-3'  |
| igf1 s    | 5'-cacctcttctacctggcgctctgcttgctc-3' | cerS2 as | 5'-ttagetaggagccggctctttgctcctgcc-3'  |
| igf1 as   | 5'-tctgagtcttgggcatgtcagtgtggcgct-3' | cerS3 s  | 5'-ccctgttcttcatcttcaccgtcgtcttct-3'  |
| elov1 s   | 5'-ccaaagctaccctctg-3'               | cerS3 as | 5'-ctaacggccatgctgaccattggcaatgag-3'  |
| elov1 as  | 5'-actcgaaccatccgaag-3'              | cerS4 s  | 5'-cacgtctctgtgatgactccatcaagaact-3'  |
| elov2 s   | 5'-ctcctactacggcctg-3'               | cerS4 as | 5'-gcgggccattggtaactgctactctaggcc-3'  |
| elov2 as  | 5'-ccgtcatgccattagc-3'               | cerS5 s  | 5'-ttggcgcagcttttatagttttcgtctagc-3'  |
| elov3 s   | 5'-gacttcgagacgtttcag-3'             | cerS5 as | 5'-gcagttggcaccattgctagagctgctgcc-3'  |
| elov3 as  | 5'-cacggtttgcttgagg-3'               | sec23 s  | 5'-agcacagtggcggaagtcaggataccaggac-3' |
| elov4 s   | 5'-ggattggaatcaagtggg-3'             | sec23 as | 5'-tgcaagtttcttcaaatgatccatgaacac-3'  |
|           |                                      |          |                                       |

## References

- Hofmann, K., Tomiuk, S., Wolff, G. & Stoffel, W. Cloning and characterization of the mammalian brain-specific, Mg2+-dependent neutral sphingomyelinase. *Proc Natl Acad Sci U S A* 97, 5895-5900, (2000).
- 2 Krut, O., Wiegmann, K., Kashkar, H., Yazdanpanah, B. & Kronke, M. Novel tumor necrosis factor-responsive mammalian neutral sphingomyelinase-3 is a C-tailanchored protein. *The Journal of biological chemistry* 281, 13784-13793, (2006).
- 3 Tomiuk, S., Hofmann, K., Nix, M., Zumbansen, M. & Stoffel, W. Cloned mammalian neutral sphingomyelinase: functions in sphingolipid signaling? *Proc Natl Acad Sci U S A* **95**, 3638-3643, (1998).